Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis

Author:

Gao Fang,Peng Chunxue,Wang Hao,Tretyakova Iraida Nikolaevna,Nosov Alexander Mikhaylovich,Shen Hailong,Yang LingORCID

Abstract

Korean pine is the dominant species of Korean pine forests. It is an economically valuable species that yields oil, high-quality timber and nuts, and it offers great prospects for further development. Complete regenerated plants of Korean pine were obtained via somatic embryogenesis using megagametophytes as the explant. The seeds of 27 families of Korean pine were collected to induce embryogenic lines. We compared the effects of explant collection time, family and medium components (concentrations of sucrose, plant growth regulators and acid-hydrolyzed casein) on embryogenic lines induction. The effects of plant growth regulators and L-glutamine contents on the proliferation and maturation of embryogenic cell lines were studied, and the germinating ability of different cell lines was evaluated. The embryogenic lines induction percentage of Korean pine reached 33.33%. When 4.52 μmol·L−1 2,4-D and 2.2 μmol·L−1 6-BA were added to the medium of embryogenic lines proliferation, the ability of embryo maturation was the best (cell line 001#-100 was 135.71·g−1 fresh weight). Adding 1–1.5g L−1 L-glutamine to the proliferation medium can improve the ability of embryo maturation (cell line 001#-100 was 165.63·g−1 fresh weight). The germination percentage of the three cell lines tested was significant, and the highest was 66%. We report on successful regeneration and cryopreservation methods for somatic embryos of Korean pine. This technology could be used to propagate the excellent germplasm resources of Korean pine and to establish multi-varietal forestry.

Publisher

MDPI AG

Subject

Forestry

Reference37 articles.

1. High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: an important cardioprotective plant

2. Somatic embryogenesis: A valuable strategy for phyto-climbing diversity conservation;Shahzad,2016

3. Micropropagation and production of forest trees;Monteuuis,2016

4. Elaboration of transcriptome during the induction of somatic embryogenesis;Góngora-Castillo,2018

5. Insights from Proteomic Studies into Plant Somatic Embryogenesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3