Optimization of Key Technologies for Induction of Embryogenic Callus and Maturation of Somatic Embryos in Korean Pine (Pinus koraiensis)

Author:

Gao Fang12,Shi Yujie1,Wang Ruirui1,Tretyakova Iraida Nikolaevna3,Nosov Alexander Mikhaylovich45ORCID,Shen Hailong1,Yang Ling1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China

2. School of Mine Safety, North China Institute of Science Technology, Langfang 065200, China

3. Laboratory of Forest Genetics and Breeding, Institution of the Russian Academy of Sciences V.N. Sukachev Institute of Forest Siberian Branch of RAS, Krasnoyarsk 660036, Russia

4. Department of Cell Biology, Institute of Plant Physiology K.A. Timiryazev, Russian Academy of Sciences, Moscow 127276, Russia

5. Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

Somatic embryogenesis (SE), which leads to the formation of embryonic callus (EC) tissue, is the most promising method for large-scale production and selective breeding of woody plants. However, in many species, SE suffers from low induction and proliferation rates, hindering the production of improved plant materials. We investigated the effects of the explant sterilization method, 4 °C cryopreservation, basal medium, ethylene removal, liquid medium supplementation, and a combination of PGRs on embryogenic callus (EC) induction of Korean pine, using immature embryos of Korean pine as explants. The effects of sucrose and maltose on EC proliferation and maturation were investigated. The differences in the maturation ability of EC somatic embryos before and after cryopreservation were evaluated using the induced embryonic cell lines. The results showed that zygotic embryos (ZEs) performed better than megagametophytes (MGs) as explants. The induction rate of EC was significantly increased after 28 days of cryopreservation at 4 °C. The induction rate of EC in the #5 family increased from 10.00% to 62.8%. The EC induction rate of the five families cultured with the DCR basal medium was higher than that with the mLV basal medium. Among them, the induction rate of the #5 family cultured with the mLV basal medium was 23.3%, while that with the DCR basal medium was 60.9%, an increase of 2.6 times. There was no significant difference in the maturation ability of EC somatic embryos before and after cryopreservation. In conclusion, this study provides a method to improve the EC induction rate and maturation ability of Korean pine.

Funder

Innovation Project of the State Key Laboratory of Tree Genetics and Breeding

National Key R&D Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3