Abstract
Algal blooms in freshwater ecosystems can negatively impact aquatic and human health. Satellite remote sensing of chlorophyll a (Chl-a) is often used to help determine the severity of algal blooms. However, satellite revisit flyover schedules may not match the erratic nature of algal blooms. Studies have paired satellite and ground-based data that were not collected on the same day, assuming Chl-a concentrations did not change significantly by the flyover date. We determined the effects of an increasing time window between satellite overpass dates and field-based collection of Chl-a on algorithms for Landsat 5, Landsat 8, and Sentinel-2, using 14 years (2006–2020) of Chl-a data from 10 Oklahoma reservoirs. Multiple regression models were built, and selected statistics were used to rank the time windows. The Sentinel-2 results showed strong relationships between Chl-a and satellite data collected up to a ±5-day window. The strength of these relationships decreased beyond a ±3-day time window for Landsat 8 and a ±1-day time window for Landsat 5. Our results suggest that the time window between field sampling and satellite overpass can impact the use of satellite data for Chl-a monitoring in reservoirs. Furthermore, longer time windows can be used with higher resolution (spatial, spectral) satellites.
Funder
United States Geological Survey
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献