Learning Pairwise Potential CRFs in Deep Siamese Network for Change Detection

Author:

Zheng DalongORCID,Wei Zhihui,Wu Zebin,Liu Jia

Abstract

Very high resolution (VHR) images change detection plays an important role in many remote sensing applications, such as military reconnaissance, urban planning and natural resource monitoring. Recently, fully connected conditional random field (FCCRF)-facilitated deep convolutional neural networks have shown promising results in change detection. However, the FCCRF in change detection currently is still postprocessing based on the output of the front-end network, which is not a convenient end-to-end network model and cannot combine front-end network knowledge with the knowledge of pairwise potential. Therefore, we propose a new end-to-end deep Siamese pairwise potential CRFs network (PPNet) for VHR images change detection. Specifically, this method adds a conditional random field recurrent neural network (CRF-RNN) unit into the convolutional neural network and integrates the knowledge of unary potential and pairwise potential in the end-to-end training process, aiming to refine the edges of changed areas and to remove the distant noise. In order to correct the front-end network identification errors, the method uses effective channel attention (ECA) to further effectively distinguish the change areas. Our experimental results on two data sets verify that the proposed method has more advanced capability with almost no increase in the number of parameters and effectively avoids the overfitting phenomenon in the training process.

Funder

Zebin Wu, Jia Liu

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3