MDESNet: Multitask Difference-Enhanced Siamese Network for Building Change Detection in High-Resolution Remote Sensing Images

Author:

Zheng Jiaxiang,Tian Yichen,Yuan Chao,Yin Kai,Zhang Feifei,Chen Fangmiao,Chen Qiang

Abstract

Building change detection is a prominent topic in remote sensing applications. Scholars have proposed a variety of fully-convolutional-network-based change detection methods for high-resolution remote sensing images, achieving impressive results on several building datasets. However, existing methods cannot solve the problem of pseudo-changes caused by factors such as “same object with different spectrums” and “different objects with same spectrums” in high-resolution remote sensing images because their networks are constructed using simple similarity measures. To increase the ability of the model to resist pseudo-changes and improve detection accuracy, we propose an improved method based on fully convolutional network, called multitask difference-enhanced Siamese network (MDESNet) for building change detection in high-resolution remote sensing images. We improved its feature extraction ability by adding semantic constraints and effectively utilized features while improving its recognition performance. Furthermore, we proposed a similarity measure combining concatenation and difference, called the feature difference enhancement (FDE) module, and designed comparative experiments to demonstrate its effectiveness in resisting pseudo-changes. Using the building change detection dataset (BCDD), we demonstrate that our method outperforms other state-of-the-art change detection methods, achieving the highest F1-score (0.9124) and OA (0.9874), indicating its advantages for high-resolution remote sensing image building change detection tasks.

Funder

State Administration of Science. Technology and Industry for National Defense

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction;International Journal of Applied Earth Observation and Geoinformation;2024-04

2. A New High-Resolution Rural Built-Up Land Extraction Method Based on Artificial Surface Index with Short-Wave Infrared Downscaling;Remote Sensing;2024-03-22

3. Multistage Interaction Network for Remote Sensing Change Detection;Remote Sensing;2024-03-19

4. Research on building instantiation change detection method in high spatial resolution remote sensing image;Fourth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2023);2024-01-23

5. Mask-Guided Local–Global Attentive Network for Change Detection in Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3