HyperLiteNet: Extremely Lightweight Non-Deep Parallel Network for Hyperspectral Image Classification

Author:

Wang Jianing,Huang Runhu,Guo Siying,Li Linhao,Pei Zhao,Liu BoORCID

Abstract

Deep learning (DL) is widely applied in the field of hyperspectral image (HSI) classification and has proved to be an extremely promising research technique. However, the deployment of DL-based HSI classification algorithms in mobile and embedded vision applications tends to be limited by massive parameters, high memory costs, and the complex networks of DL models. In this article, we propose a novel, extremely lightweight, non-deep parallel network (HyperLiteNet) to address these issues. Based on the development trends of hardware devices, the proposed HyperLiteNet replaces the deep network by the parallel structure in terms of fewer sequential computations and lower latency. The parallel structure can extract and optimize the diverse and divergent spatial and spectral features independently. Meanwhile, an elaborately designed feature-interaction module is constructed to acquire and fuse generalized abstract spectral and spatial features in different parallel layers. The lightweight dynamic convolution further compresses the memory of the network to realize flexible spatial feature extraction. Experiments on several real HSI datasets confirm that the proposed HyperLiteNet can efficiently decrease the number of parameters and the execution time as well as achieve better classification performance compared to several recent state-of-the-art algorithms.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Spectral–spatial classification of hyperspectral data via morphological component analysis-based image separation;Xue;IEEE Trans. Geosci. Remote Sens.,2014

2. Hyperspectral Remote Sensing Image Subpixel Target Detection Based on Supervised Metric Learning

3. Review ArticleDigital change detection methods in ecosystem monitoring: a review

4. On the mean accuracy of statistical pattern recognizers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3