A New Dual-Branch Embedded Multivariate Attention Network for Hyperspectral Remote Sensing Classification

Author:

Chen Yuyi1,Wang Xiaopeng1,Zhang Jiahua23ORCID,Shang Xiaodi1ORCID,Hu Yabin4,Zhang Shichao1ORCID,Wang Jiajie1

Affiliation:

1. College of Computer Science & Technology, Qingdao University, Qingdao 266071, China

2. Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Sanya 572029, China

3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. Lab of Marine Physics and Remote Sensing, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

Abstract

With the continuous maturity of hyperspectral remote sensing imaging technology, it has been widely adopted by scholars to improve the performance of feature classification. However, due to the challenges in acquiring hyperspectral images and producing training samples, the limited training sample is a common problem that researchers often face. Furthermore, efficient algorithms are necessary to excavate the spatial and spectral information from these images, and then, make full use of this information with limited training samples. To solve this problem, a novel two-branch deep learning network model is proposed for extracting hyperspectral remote sensing features in this paper. In this model, one branch focuses on extracting spectral features using multi-scale convolution and a normalization-based attention module, while the other branch captures spatial features through small-scale dilation convolution and Euclidean Similarity Attention. Subsequently, pooling and layering techniques are employed to further extract abstract features after feature fusion. In the experiments conducted on two public datasets, namely, IP and UP, as well as our own labeled dataset, namely, YRE, the proposed DMAN achieves the best classification results, with overall accuracies of 96.74%, 97.4%, and 98.08%, respectively. Compared to the sub-optimal state-of-the-art methods, the overall accuracies are improved by 1.05, 0.42, and 0.51 percentage points, respectively. The advantage of this network structure is particularly evident in unbalanced sample environments. Additionally, we introduce a new strategy based on the RPNet, which utilizes a small number of principal components for feature classification after dimensionality reduction. The results demonstrate its effectiveness in uncovering compressed feature information, with an overall accuracy improvement of 0.68 percentage points. Consequently, our model helps mitigate the impact of data scarcity on model performance, thereby contributing positively to the advancement of hyperspectral remote sensing technology in practical applications.

Funder

Finance Science and Technology Project of Hainan Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3