Classification of the Pathological Range of Motion in Low Back Pain Using Wearable Sensors and Machine Learning

Author:

Villalba-Meneses Fernando123ORCID,Guevara Cesar4ORCID,Lojan Alejandro B.2ORCID,Gualsaqui Mario G.2ORCID,Arias-Serrano Isaac2ORCID,Velásquez-López Paolo A.2ORCID,Almeida-Galárraga Diego2ORCID,Tirado-Espín Andrés5ORCID,Marín Javier13ORCID,Marín José J.13ORCID

Affiliation:

1. IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain

2. School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador

3. Department of Design and Manufacturing Engineering, University of Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain

4. Centro de Investigación en Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170103, Ecuador

5. School of Mathematical and Computational Sciences, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador

Abstract

Low back pain (LBP) is a highly common musculoskeletal condition and the leading cause of work absenteeism. This project aims to develop a medical test to help healthcare professionals decide on and assign physical treatment for patients with nonspecific LBP. The design uses machine learning (ML) models based on the classification of motion capture (MoCap) data obtained from the range of motion (ROM) exercises among healthy and clinically diagnosed patients with LBP from Imbabura–Ecuador. The following seven ML algorithms were tested for evaluation and comparison: logistic regression, decision tree, random forest, support vector machine (SVM), k-nearest neighbor (KNN), multilayer perceptron (MLP), and gradient boosting algorithms. All ML techniques obtained an accuracy above 80%, and three models (SVM, random forest, and MLP) obtained an accuracy of >90%. SVM was found to be the best-performing algorithm. This article aims to improve the applicability of inertial MoCap in healthcare by making use of precise spatiotemporal measurements with a data-driven treatment approach to improve the quality of life of people with chronic LBP.

Funder

Universidad Indoamérica

Publisher

MDPI AG

Reference40 articles.

1. Mechanical Low Back Pain;Will;Am. Fam. Physician,2018

2. Care for low back pain: Can health systems deliver?;Traeger;Bull. World Health Org.,2019

3. Low back pain, a comprehensive review: Pathophysiology, diagnosis, and treatment;Urits;Curr. Pain Headache Rep.,2019

4. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017;Wu;Ann. Transl. Med.,2020

5. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990–2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors;Kassebaum;J. Dent. Res.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3