Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material

Author:

Sun Yiming1,Huang Junjie2,Zhang Hongzhou2,Zhang Lianqi2,Wang Defa1

Affiliation:

1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China

2. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

Li-rich materials have become one of the most promising cathode candidates for next-generation lithium-ion battery systems due to their high capacity and operating voltage. Conventional O3-type Li-rich materials undergo a structural transition from a layered to a spinel phase during cycling, leading to the degradation in their electrochemical performance, especially in terms of their voltage decay. The oxygen atoms comprising the structure of O2-type Li-rich materials are stacked in the ABAC configuration, which can effectively suppress these harmful phase transitions. However, O2-type Li-rich materials are metastable structures and can only be synthesized via the means of complex ion exchange methods. In addition, the surface of the material is susceptible to side reactions with the electrolyte when charged to high voltages. Here, we explored the optimal conditions for the synthesis of O2-type Li[Li0.25Ni0.1Co0.05Mn0.6]O2 (LLNCM) in more detail by preparing the precursors using the sol-gel method. Meanwhile, the modification of the material’s surface via low-temperature hydrolysis of aluminum isopropoxide has been proposed for the first time in this study to avoid the damage of metastable materials by the high-temperature coating process. The surface-modified materials prepared under optimal conditions exhibited an excellent electrochemical performance, indicating that a highly stable O2-type bulk phase structure with effective surface modification is a potential way to promote the commercial applications of Li-rich cathode materials.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3