Abstract
Driven by the increasing plea for greener transportation and efficient integration of renewable energy sources, Ni-rich metal layered oxides, namely NMC, Li [Ni1−x−yCoyMnz] O2 (x + y ≤ 0.4), and NCA, Li [Ni1−x−yCoxAly] O2, cathode materials have garnered huge attention for the development of Next-Generation lithium-ion batteries (LIBs). The impetus behind such huge celebrity includes their higher capacity and cost effectiveness when compared to the-state-of-the-art LiCoO2 (LCO) and other low Ni content NMC versions. However, despite all the beneficial attributes, the large-scale deployment of Ni-rich NMC based LIBs poses a technical challenge due to less stability of the cathode/electrolyte interphase (CEI) and diverse degradation processes that are associated with electrolyte decomposition, transition metal cation dissolution, cation–mixing, oxygen release reaction etc. Here, the potential degradation routes, recent efforts and enabling strategies for mitigating the core challenges of Ni-rich NMC cathode materials are presented and assessed. In the end, the review shed light on the perspectives for the future research directions of Ni-rich cathode materials.
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献