Stabilizing Nickel‐Rich Cathodes in Aqueous Process through Nanocellulose as Water Barrier

Author:

Wang Ying1ORCID,Fang Ying2,Huang Luyao1,Wang Jiwei1,Zhou Hua3,Wang Guanyi4,Wu Qingliu4,Wang Guofeng2,Zhu Hongli1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering Northeastern University Boston MA 02115 USA

2. Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh PA 15260 USA

3. X‐Ray Science Division Argonne National Laboratory Lemont IL 60439 USA

4. Department of Chemical and Paper Engineering Western Michigan University Kalamazoo MI 49008 USA

Abstract

AbstractNickel‐rich LiNi0.8Co0.1Mn0.1O2 (NMC 811) cathode offers high voltage and high specific capacity, making it promising for high energy density batteries. However, large‐scale manufacturing of aqueous‐processed NMC 811 electrodes remains challenging due to proton exchange causing material decomposition and capacity loss. This work addresses this issue by constructing an in situ nanocellulose protective layer for NMC 811 particles via electrostatic interactions during the slurry preparation. For the first time, the interatomic spacing between inter‐chains of nanocellulose is measured through wide‐angle X‐ray scattering and demonstrate the ability to effectively confine interlayer water using atomistic simulations. Moreover, this nanocellulose coverage simultaneously minimizes Li+ surface segregation and mitigates water infiltration. Owing to less material decomposition during the aqueous processing, nanocellulose‐protected NMC electrodes exhibit higher initial coulombic efficiency (83% vs 62% at 0.1C) and capacity (133 vs 59 mAh g−1 at 6C) than unprotected electrodes. Additionally, optimized aqueous‐processed NMC electrodes offer comparable or even superior electrochemical properties compared to the electrodes fabricated using the conventional toxic organic solvent, N‐methyl‐2‐pyrrolidone. Consequently, the developed approach enables affordable, sustainable aqueous processing for Nickel‐rich NMC 811 cathodes with excellent electrochemical performances.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3