Experimental Study on the Thermal Conductivity of Improved Graphite Composite Insulation Boards

Author:

Liu Genbao,Guo Yutao,Jian Zhiyu,Huang Mojia,Zhao TengfeiORCID

Abstract

The thermal conductivity of thermal insulation materials directly affects the building energy consumption. The types and constituents of thermal insulation materials in thermal insulation boards are the key to determining the insulation performance. By optimizing the material constituents and ratios, this paper proposes an improved graphite composite insulation board (GCIB), which has lower thermal conductivity and good fire resistance. Through theoretical derivation, it is found that the limit range of the thermal conductivity of the new GCIB is 0.042–0.064 W/(m · K). Combined with the results of theoretical value analysis, and according to the ratios of material components, the random distribution function of each material component is constructed, and the numerical model of GCIB is established. Through numerical analysis, the range of thermal conductivity of the new composite insulation board is 0.046–0.050 W/(m · K). Finally, we establish an experimental model of the new GCIB. Through the model test of six GCIBs, the thermal conductivity of the new GCIB is obtained as 0.046 W/(m · K), which is in good agreement with the results of theoretical analysis and numerical simulation. Through theoretical analysis, numerical simulation and a sample test, this paper verifies the better thermal insulation performance of the improved GCIB, providing theoretical and numerical simulation methods for the new GCIB, as well as a theoretical reference for the promotion and application of the GCIB.

Funder

Jiangxi Provincial Natural Science Foundation

Jiangxi Province Education Science “14th Five-Year Plan” Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference58 articles.

1. An overview of factors influencing thermal conductivity of building insulation materials;J. Build. Eng.,2021

2. Capuano, L. (2018). International Energy Outlook 2018 (IEO2018).

3. Uncertainty in the thermal conductivity of insulation materials;Anderson;Energy Build.,2010

4. (2001). ASHRAE Handbook, American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

5. A heat transfer note on temperature dependent thermal conductivity;Peavy;J. Therm. Insul. Build. Envel.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3