Silica–Chitosan Composite Aerogels for Thermal Insulation and Adsorption

Author:

Mei Xueli12,Li Shihao2,Chen Yaoyao2,Huang Xueli2,Cao Yali2,Guro Vitaliy P.3,Li Yizhao12ORCID

Affiliation:

1. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

2. State State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China

3. Institute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100047, Uzbekistan

Abstract

The dissipation of energy in the form of heat causes a huge energy loss across the globe. Thermal insulation materials which reduce heat loss can alleviate the energy crisis. Among many thermal insulation materials, silica aerogels (SAs) have attracted extensive attention due to their high surface area, low density and low thermal conductivity. However, the applications of SAs are restricted by their mechanical fragility. In this paper, a series of different ratios of silica–chitosan composite aerogels (SCAs) were prepared by mixing sodium silicate aqueous solution and chitosan solution followed by freeze drying. The surface morphology of SAs, CAs and SCAs was studied by scanning electron microscopy (SEM). The specific surface area, pore volume and pore size of the composite aerogels were studied by N2 adsorption–desorption isotherms. The thermal conductivities, chemical structures, thermal stabilities and hydrophobicities of SAs, CAs and SCAs were tested and analyzed. In addition, the adsorption properties of SCAs were measured using different organic solvents. The results reveal that when the proportion of sodium silicate aqueous solution and chitosan solution is 1:1, the obtained SCA−1/1 has the best performance, with a low thermal conductivity of 0.0369 W/m·K, a large specific surface area of 374.7 m2/g, and good thermal stability. In addition, the prepared SCAs also have good hydrophobicity and absorption properties, with adsorption capacities of 6.7–9.4 g/g, which show great application potential in the fields of insulation and adsorption.

Funder

Kay Research and Development Project of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3