In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (1−01) Surface of Calcium Oxalate Monohydrate Crystal

Author:

Cho Kang Rae12ORCID

Affiliation:

1. Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea

2. Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract

Calcium oxalate monohydrate (COM) crystal is the major crystalline component of human kidney stones. Its growth event at the nanometer and micrometer scales, i.e., the growth of the COM molecular steps generated from the dislocation outcrop on the crystal surface and its inhibition by associated acidic organic molecules such as citrate, is now well understood by studies conducted using in situ liquid-phase atomic force microscopy (AFM). Yet, the detailed assessment of the evolution of the COM molecular steps at the dislocation outcrop has been poorly conducted. Herein, in situ liquid-phase AFM was used to primarily investigate how those COM molecular steps are generated on a COM broadest crystal surface (1−01) and influenced by a model acidic peptide, L-aspartic acid 6mer (L-Asp6) adsorbed onto the emerging steps and terraces on the surface. Like many other mineral crystals, a segment of the pseudo-triangle-shaped step spiral, in the process of its birth from the dislocation outcrop, starts to move after reaching the critical step length. When the budding step spiral got adsorption of L-Asp6 to it, it appeared rather with ellipse-like hexagonal morphology—which is reflected in the bulk crystal morphology—implying changes in orientation-dependent step edge energy and much-delayed spiral generation time.

Funder

Student Employee Graduate Research Fellowship from Lawrence Livermore National Laboratory

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3