Characterizations on Precipitations in the Cu-Rich Corner of Cu-Ni-Al Ternary Phase Diagram

Author:

Zhou Yongxin1,Zheng Chenyang1,Chen Jiankun1,Chen Amin1,Jia Lei1ORCID,Xie Hui2,Lu Zhenlin1

Affiliation:

1. School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

2. School of Materials Engineering, Xi’an Aeronautical University, Xi’an 710077, China

Abstract

Three kinds of Cu-Ni-Al alloys, whose chemical compositions are located in the Cu-rich corner of the isothermal section of the Cu-Ni-Al ternary phase diagram, were prepared by melting and casting firstly, and then solution and aging treatments were carried out. The microstructure was characterized and the competitive formation process of Ni-Al intermetallics were discussed. The results show that there are little amounts of NiAl phase at the grain boundary and needle- or particle-like Ni3Al phase inside the Cu matrix in all the as-cast alloys, although they are in the single-phase area. Solution and aging treatments mainly result in the disappearance and precipitation of Ni3Al phase, but the precipitations during aging are much smaller than those in the as-cast alloys. Thermodynamics and kinetics calculation indicate that the NiAl intermetallic wins out in the solidification process because of its lower change in Gibbs free energy, while Ni3Al phase is first to precipitate during aging due to its lower formation enthalpy and required Al concentration. The most important contribution of this work is that it proves that intermetallics can precipitate from the so-called single-phase zone in the Cu-rich corner of the Cu-Ni-Al phase diagram, which is the necessary prerequisite for the realization of high strength and high electrical conductivity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3