Three-Dimensional Gradient Metamaterial Devices Coupled with Phononic Crystals for Acoustic Enhancement Sensing

Author:

Zhao Xinsa1,Hao Guodong1,Shang Yu1,Han Jianning1

Affiliation:

1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Abstract

Conventional acoustic systems exhibit a difficulty in sensing weak acoustic fault signals in complex mechanical vibration environments. Therefore, it is necessary to develop an acoustic sensing mode and a corresponding functional device with pressure amplification. This paper proposes a three-dimensional device, coupling gradient acoustic metamaterials (GAM) with phononic crystals (GAM–PC). The strong wave compression effect coupled with the phononic crystal equivalent medium mechanism is utilized to achieve the enhancement of weak acoustic signal perception at the target frequency. The superior amplification capability of the GAM–PC structure for the amplitude of loud signals is verified by numerical simulations and experiments. Moreover, the GAM–PC structure has a narrower bandwidth per slit, making it more frequency selective. Furthermore, the structure can separate different frequency components. This work is expected to be applied to signal monitoring in environments with strong noise.

Funder

National Key R&D Program of China

Natural Science Foundation of Shanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3