The Effect of Solvents on the Crystal Morphology of Pyriproxyfen

Author:

Yan Xiaoyang1,Wang Na1,Ji Xiongtao1,Feng Yaoguang1,Li Jun1,Wang Ting1,Huang Xin1ORCID,Hao Hongxun12ORCID

Affiliation:

1. National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Abstract

To obtain crystal products with ideal morphology and better quality, it is important to fully understand and grasp the affecting mechanism of solvents on crystal morphology. In this work, the interactions between solvent/solute molecules and different crystal faces of pyriproxyfen are investigated by a combination of experiments and molecular simulations. It is found that pyriproxyfen crystals grow into a lamellar morphology in methanol and ethanol, while the crystal grows into a three-dimensional shuttle morphology in n-butanol and n-heptane. Molecular simulations reveal that the molecular arrangement of crystal faces makes the alcohol hydroxyl adsorption sites exposed in different degrees, and the (002) face is more sensitive to alcohol hydroxyl than other faces. The adsorption of alcohol hydroxyl groups hinders the growth of crystal planes, so (002) and (102) faces become the main crystal planes in methanol and ethanol, and the lamellar crystal is formed. The developed knowledge of the growth mechanism based on the interaction between the solvent and crystal interface can be conducive to the further optimization of the pyriproxyfen crystal products.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3