Nanocomposite Foams of Polyurethane with Carbon Nanoparticles—Design and Competence towards Shape Memory, Electromagnetic Interference (EMI) Shielding, and Biomedical Fields

Author:

Kausar Ayesha123ORCID,Ahmad Ishaq123,Zhao Tingkai14,Aldaghri Osamah5ORCID,Ibnaouf Khalid H.5ORCID,Eisa M. H.5

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa

3. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

4. School of Materials Science & Engineering, Northwestern Polytechnical University, Xi’an 710072, China

5. Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

Abstract

Polyurethane is a multipurpose polymer with indispensable physical characteristics and technical uses, such as films/coatings, fibers, and foams. The inclusion of nanoparticles in the polyurethane matrix has further enhanced the properties and potential of this important polymer. Research in this field has led to the design and exploration of polyurethane foams and polyurethane nanocomposite foams. This review article reflects vital aspects related to the fabrication, features, and applications of polyurethane nanocomposite foams. High-performance nanocellular polyurethanes have been produced using carbon nanoparticles such as graphene and carbon nanotubes. Enhancing the amounts of nanofillers led to overall improved nanocomposite foam features and performances. Subsequently, polyurethane nanocomposite foams showed exceptional morphology, electrical conductivity, mechanical strength, thermal stability, and other physical properties. Consequently, multifunctional applications of polyurethane nanocomposite foams have been observed in shape memory, electromagnetic interference shielding, and biomedical applications.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3