Nanocomposites of thermoplastic matrices with non-covalent fullerene reinforcement—Structural diversity, physical impact and potential

Author:

Kausar Ayesha12ORCID,Ahmad Ishaq12

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West, South Africa

Abstract

Fullerene has been acknowledged as a significant nanocarbon nanofiller enhancing the imperative polymer characteristics. Since, thermoplastic polymers constitute a large group of polymeric materials, fullerene has been used as reinforcement in these matrices mostly via non-covalent means. This state-of-the-art review article summarizes thermoplastic polymer nanocomposites reinforced with fullerene nano-additives without involving any covalent interactions. Accordingly, thermoplastic polymer/fullerene nanocomposites of interest have non-covalent or physical interactions in the matrix-nanofiller such as van der Waals forces, electrostatic interactions, hydrogen bonding, and aromatic stacking interactions. Number of thermoplastic polymers including polyamide, polyurethanes, and block copolymers have been non-covalently or physically reinforced with the fullerene molecules. Ensuing high performance thermoplastic polymer/fullerene nanocomposites exhibited improved microstructure, electrical, mechanical, thermal, and other physical properties. Enhancements in the thermal, mechanical, and electrical properties of the thermoplastic/fullerene nanomaterials were found dependent upon the nanofiller contents, orientations, interfacial effects, and processing. Consequently, the polyamide/fullerene systems were found efficient to enhance the glass transition up to 260°C, in addition to optimum mechanical properties. Polyurethane/fullerene systems performed better for improved tensile strength and young’s modulus features up to 90 MPa and 48 GPa, respectively. System based on poly (methyl methacrylate) and fullerene has resulted in high thermal degradation temperature in the range of 501-633°C with fine electrical conductivity of 1.3 Scm−1. Using combination of fullerene and graphene nanofiller (due to synergistic effects) has been found to improve the electrical conductivity considerably in the range of 1.8–2.5 Scm−1 for a polystyrene and block copolymer system. However, attaining fine fullerene nanoparticle dispersion of non-covalently reinforced matrices have been found important affecting the final nanocomposite properties. Consequently, processability and essential characteristics of non-covalently fullerene filled nanocomposites can be influenced due to nanoparticle aggregation. Hence, the physical property enhancement potential of physical linking between the non-covalently linked thermoplastics-fullerene has been portrayed in this article. Research on non-covalently interacted thermoplastic polymer/fullerene nanocomposites revealed technical potential ranging from energy/electronic devices to engineering and biomedical sectors. This review article can be a useful guide for the field researchers towards the development of advanced systems using non-covalently linked polymer/fullerene nanomaterials for future technical applications.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3