Luminescence Properties of Fe2+:ZnSe Single Crystals Grown via a Traveling Heater Method

Author:

Nan Weina1,Yang Da1,Zhou Boru1,Zhang Liang1,Xiao Jing1,Yu Hongwei1,Hu Zhanggui1,Wu Yicheng1

Affiliation:

1. Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

The luminescence properties of iron-doped ZnSe (Fe2+:ZnSe) single crystals grown via a traveling heater method have been studied via photoluminescence (PL). Nine emission bands were identified in the PL spectra of Fe2+:ZnSe single crystals and their origins were also discussed. The near-infrared emission bands seen at 820 nm and 978 nm can be attributed to the emission bands formed by the background Fe or other impurity-related defect complexes in Fe2+:ZnSe single crystals, rather than by doped transition-metal-related defects. With the increase in temperature, the PL intensity increased slightly and reached a maximum near room temperature for bound excitons (430–490 nm), but the PL intensity decreased significantly for impurity-defect emission bands (500–720 nm), indicating the occurrence of a thermal quenching effect. The excitation wavelength-dependent PL spectra showed that PL intensity first increased and then decreased with an increase in the excitation wavelengths, and the maximum PL intensity of the bound excitons was obtained at 364 nm. In addition, the X-ray photoelectron spectroscopy (XPS) results showed that both bivalent and trivalent iron ions were found, but bivalence was the dominant charge state for iron atoms in the iron-doped ZnSe single crystals, meaning that they are suitable for developing mid-infrared gain medium applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3