Zinc(II) and Copper(II) Complexes of 4-Styrylpyridine and 1-Adamantanecarboxylic Acid: Syntheses, Crystal Structures, and Photopolymerization

Author:

Lee Dong Hee1ORCID,An Jaewook1,Oh Jihye1,Park In-Hyeok1ORCID

Affiliation:

1. Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

A combination of 4-styrylpyridine (spy) and 1-adamantanecarboxylic acid (Hadc) was employed in the assembly reactions with Zn(II) and Cu(II) nitrates. The photoreactivity of the products was compared and discussed on the basis of the structure–function relationship. Zinc(II) complex 1 is a trinuclear species of type [Zn3(spy)2(adc)6] in which three zinc(II) atoms are linearly arranged, with two adjacent zinc(II) atoms linked by three bridging carboxylates. Two spy ligands occupy both terminal positions, yielding the overall structure of a six-bladed windmill. Copper(II) complex 2, [Cu(spy)2(adc)2][Cu2(spy)2(adc)4]·2DMF, is an inorganic cocrystal comprising a mononuclear complex with a trans square planar geometry and a dinuclear complex with a paddle-wheel structure. In the photoreaction experiments characterized by 1H NMR spectroscopy, the zinc(II) complex was found to be photoinert, while the copper(II) complex was photoreactive to form a cyclobutene ring via the [2+2] photodimerization between two spy ligands, resulting in the preparation of a one-dimensional chain as a coordination polymer. The separations of the C=C bond pair obtained from the crystal structures for both products also support their photoreactivity. For example, the spy ligands from two adjacent monocopper(II) complexes are aligned in a head-to-tail manner with the separation of 3.899 Å between the C=C bond pair, satisfying the so-called Schmidt criteria (<4.2 Å). However, no other products satisfy this condition.

Funder

NRF of Korea

COMPA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3