Solid-State [2+2] Photoreaction of Isostructural Cd(II) Metal Complexes and Solid-State Fluorescence

Author:

Ekka Akansha1,Choudhury Aditya1ORCID,Samanta Madhumita1,Deshmukh Ayushi1,Halcovitch Nathan R.2ORCID,Park In-Hyeok3ORCID,Medishetty Raghavender1ORCID

Affiliation:

1. Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491001, India

2. Chemistry Department, Lancaster University, Lancaster LA1 4YB, UK

3. Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

A green method to synthesize cyclobutane derivatives has been developed over the past three decades in the form of solid-state [2+2] photochemical reactions. These solid-state reactions also play a major role in the structural transformation of hybrid materials. In this regard, crystal engineering has played a major role in designing photoreactive molecular systems. Here, we report three novel binuclear Cd(II) complexes with the molecular formula [Cd2(4spy)4L4], where 4spy = 4-styryl pyridine and L = p-toluate (1); 4-fluorobenzoate (2); and 3-fluorobenzoate (3). Although three different benzoates are used, all three complexes are isostructural, as corroborated through SCXRD experiments. Structural analysis also helped in identifying two potential photoreactions. These are both intra- and intermolecular in nature and are driven by the head-to-head (HH) and head-to-tail (HT) alignment of 4spy linkers within these metal complexes. 1H NMR spectroscopy studies showed evidence of a quantitative head-to-head photoreaction in all these three complexes, and SCXRD analysis of the recrystallization of the photoproducts also provided confirmation. TGA studies of these photoreactive complexes showed an increase in the thermal stability of the complexes due to the solid-state photoreaction. Photoluminescence studies of these complexes have been conducted, showing a blue shift in emission spectra across all three cases after the photoreaction.

Funder

IIT Bhilai, IBITF

NRF of Korea

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3