Micro-Nanoarchitectonics of Ga2O3/GaN Core-Shell Rod Arrays for High-Performance Broadband Ultraviolet Photodetection

Author:

Tang Ruifan12,Li Guanqi2,Hu Xun2,Gao Na2,Li Jinchai2ORCID,Huang Kai2,Kang Junyong2ORCID,Zhang Rong2

Affiliation:

1. School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang 414006, China

2. Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China

Abstract

This study presents broadband ultraviolet photodetectors (BUV PDs) based on Ga2O3/GaN core-shell micro-nanorod arrays with excellent performance. Micro-Nanoarchitectonics of Ga2O3/GaN core-shell rod arrays were fabricated with high-temperature oxidization of GaN micro-nanorod arrays. The PD based on the microrod arrays exhibited an ultrahigh responsivity of 2300 A/W for 280 nm at 7 V, the peak responsivity was approximately 400 times larger than those of the PD based on the planar Ga2O3/GaN film. The responsivity was over 1500 A/W for the 270–360 nm band at 7 V. The external quantum efficiency was up to 1.02 × 106% for 280 nm. Moreover, the responsivity was further increased to 2.65 × 104 A/W for 365 nm and over 1.5 × 104 A/W for 270–360 nm using the nanorod arrays. The physical mechanism may have been attributed to the large surface area of the micro-nanorods coupled with the Ga2O3/GaN heterostructure, which excited more photogenerated holes to be blocked at the Ga2O3 surface and Ga2O3/GaN interface, resulting in a larger internal gain. The overall high performance coupled with large-scale production makes it a promising candidate for practical BUV PD.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Key scientific and technological Program of Xiamen

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3