Numerical and Experimental Study of the Front Surface Recombination Velocities and Base Widths Effect in Multi-Crystalline Silicon Solar Cell Quantum Efficiency

Author:

Abdouli Bilel1,Khezami Lotfi2ORCID,Guesmi Ahlem2ORCID,Assadi Aymen Amine3ORCID,Rabha Mohamed Ben1

Affiliation:

1. Laboratoire de Nanomatériaux et Systèmes pour Énergies Renouvelables, Centre de Recherches et des Technologies de l’Énergie, Technopôle de Borj-Cédria, BP 95 Hammam-Lif, Tunis 2050, Tunisia

2. Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia

3. École Nationale Supérieure de Chimie de Rennes, ENSCR, Université de Rennes, 11 Allée de Beaulieu, 35708 Rennes, France

Abstract

Photovoltaic research activities are related to material innovation that can be obtained at a comparatively low cost. Semiconductor p-type multi-crystalline Czochralskyc (CZ)-grown silicon wafers were used in this study. The effects of front surface recombination velocities and base thickness in solar cells’ quantum efficiency are theoretically calculated. The results denote that both the surface recombination velocities and the base widths significantly impact the quantum efficiency. The results are of universal technical importance in designing solar cells and their surface structures. The main goal of this paper was to confirm the validity of the above theoretical calculations; for this purpose, silicon solar cells with front-thin porous silicon and rear interdigitated contact have been produced. A good agreement was obtained between experimentally obtained solar cells’ quantum efficiency data and the theoretical results. Therefore, the quantum efficiency of the mc-Si solar cells with porous silicon and rear interdigitated contact was enhanced up to 25% at 580–1100 nm wavelength range and up to 50% at short wavelength (400–570 nm), compared to reference mc-Si solar cells. The obtained results indicate that the rear interdigitated contact maximizes the surface area of the metal contact and improves the current collection. At the same time, the porous silicon layer passivates the front surface and reduces recombination losses.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference31 articles.

1. (2022, July 13). Silicon Solar Cell Parameters. Available online: https://www.pveducation.org/pvcdrom/design-of-silicon-cells/silicon-solar-cell-parameters.

2. (2022, July 13). Surface Recombination. Available online: https://www.pveducation.org/pvcdrom/pn-junctions/surface-recombination.

3. Optimizations of Si PIN diode phase-shifter for controlling MZM quadrature bias point using SOI rib waveguide technology;Moshaev;Opt. Laser Technol.,2021

4. Menahem, J., and Malka, D. (2022). A Two-Channel Silicon Nitride Multimode Interference Coupler with Low Back Reflection. Appl. Sci., 12.

5. Simulation and optimization of the performance of multicrystalline silicon solar cell using porous silicon antireflection coating layer;Faltakh;Superlattices Microstruct.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3