Strain-Induced Band Gap Variation in InGaN/GaN Short Period Superlattices

Author:

Chatzopoulou Polyxeni1,Vasileiadis Isaak G.1ORCID,Komninou Philomela1ORCID,Pontikis Vassilis2ORCID,Karakostas Theodoros1ORCID,Dimitrakopulos George P.1ORCID

Affiliation:

1. School of Physics, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece

2. DRF/IRAMIS, Centre d’Etudes de Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Abstract

The use of strained substrates may overcome indium incorporation limits without inducing plastic relaxation in InGaN quantum wells, and this is particularly important for short-period InGaN/GaN superlattices. By incorporating elastic strain into these heterostructures, their optoelectronic behavior is modified. Our study employed density functional theory calculations to investigate the variation in the band-gap energy of short-period InGaN/GaN superlattices that comprise pseudomorphic quantum wells with a thickness of just one monolayer. Heterostructures with equibiaxially strained GaN barriers were compared with respective ones with relaxed barriers. The findings reveal a reduction of the band gap for lower indium contents, which is attributed to the influence of the highly strained nitrogen sublattice. However, above mid-range indium compositions, the situation is reversed, and the band gap increases with the indium content. This phenomenon is attributed to the reduction of the compressive strain in the quantum wells caused by the tensile strain of the barriers. Our study also considered local indium clustering induced by phase separation as another possible modifier of the band gap. However, unlike the substrate-controlled strain, this was not found to exert a significant influence on the band gap. Overall, this study provides important insights into the behavior of the band-gap energy of strained superlattices toward optimizing the performance of optoelectronic devices based on InGaN/GaN heterostructures.

Funder

Operational Programme “Competitiveness, Entrepreneurship and Innovation”

Greece and the EU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electronic Properties of Hexagonal V-Shaped Gallium Nitride Pits;The Journal of Physical Chemistry C;2023-12-14

2. III-nitride nanowires for emissive display technology;Journal of Information Display;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3