Production of Sodium Bicarbonate with Saline Brine and CO2 Co-Utilization: Comparing Modified Solvay Approaches

Author:

Ali Asif1,Mendes Catarina E.1,de Melo Leonardo G. T. C.1,Wang Jinsheng2,Santos Rafael M.1ORCID

Affiliation:

1. School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

2. CanmetENERGY, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada

Abstract

The present work investigates the production of sodium bicarbonate in combination with the co-utilization of saline brine and carbon capture, utilization, and sequestration (CCUS). The use of ammonia in the traditional Solvay process could be eliminated by using a modified Solvay process. This study compared the modification with the addition of three buffering additives: Ca(OH)2, KOH, and NH4HCO3. The effectiveness of these processes, using two qualities of saline brine (desalination and aquifer), is compared based on the purity of the produced NaHCO3. It was found that the use of Ca(OH)2 did not produce high-purity NaHCO3, while NH4HCO3 and KOH performed better. Desalination brine utilization with NH4HCO3 resulted in the production of high-purity NaHCO3, while the second most suitable method involved the use of KOH, and the main co-product formed was Na2CO3. Geochemical modeling is performed in order to have insights into the carbonation (in the reactor) and precipitation (in the oven) behavior of the reactions. It predicted the precipitation of mineral phases well, though kinetics might hinder some saturated solids to dissolve first. The present study shows that accurate characterization is critical to accurately assess the success of modified Solvay processes. The use of QXRD and SEM analyses, complemented with geochemical modeling, helped to better understand the processes and the formation of NaHCO3. Further investigations on diverse brines could provide for their better utilization by the geological carbon sequestration and water desalination industries that produce them.

Funder

Natural Sciences and Engineering Research Council

Ontario Agri-Food Innovation Alliance

Program of Energy Research and Development of Canada

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3