Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors

Author:

Mancha LuisORCID,Uriarte DavidORCID,Prieto MaríaORCID

Abstract

Lysimeters are the reference method for determining ETc, but they are expensive and complex, which limits their use. The first objective of this work was to adjust and evaluate the robustness of sap flow sensors in order to determine the transpiration of a vineyard and, together with an evaporation model, to calculate the ETc of the vineyard. For this purpose, we compared water consumption data obtained from a vineyard weighing lysimeter (ETcLys) with the sum of transpiration obtained from sap flow sensors (TSF) and evaporation estimated empirically over four years (2012, 2013, 2014 and 2015). The second objective was to obtain the relationship between the vegetative growth and transpiration of the vines with different water availability (irrigation and rainfed treatments), as an alternative method for estimating vine water needs adjusted to their real development. The third and last objective was to evaluate the transpiration response of the vines when subjected to water stress. We carried out the work in an experimental vineyard which has a well-established weighing lysimeter. As a result, a good match was obtained between vine sap flow and transpiration (R2 = 0.85) as well as a good relationship between vegetative growth and vine transpiration (FiPAR: R2Irrigation = 0.34. R2Rainfed = 0.54; LAI: R2Irrigation = 0.68. R2Rainfed = 0.53).

Funder

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

Government of Extremadura

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference95 articles.

1. Irrigation of fruit trees and vines: an introduction

2. Water use by drip-irrigated late-season peaches

3. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage, 56;Allen,1998

4. Crop water requirements. FAO Irrigation and Drainage Paper nº 24;Doorenbos,1975

5. Transpiration and evaporation of grapevine, two components related to irrigation strategy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3