Optimal Charging of Plug-In Electric Vehicle: Considering Travel Behavior Uncertainties and Battery Degradation

Author:

Tayarani ,Jahangir ,Nadafianshahamabadi ,Golkar ,Ahmadian ,Elkamel

Abstract

The negative environmental impacts of using fossil fuel-powered vehicles underlined the need for inventing an alternative eco-friendly transportation fleet. Plug-in electrical vehicles (PEVs) are introduced to cut the continuing increase in energy use and carbon emission of the urban mobility. However, the increased demand for mobility, and therefore energy, can create constraints on the power network which can reduce the benefits of electrification as a certain and reliable source. Thus, the rise in the use of electric vehicles needs electric grids to be able to feed the increased energy demand while the current infrastructure supports it. In this paper, we introduce a methodological framework for scheduling smart PEVs charging by considering the uncertainties and battery degradation. This framework includes an economic model for charging and discharging of PEVs which has been implemented in a 21-node sample distribution network with a wind turbine as a distributed generation (DG) unit. Our proposed approach indicates that the optimal charging of the PEVs has a high impact on the distribution network operation, particularly under the high market penetration of PEVs. Thus, the smart grid to vehicle (G2V) charging mode is a potential solution to maximize the PEV’s owner profit, while considering the battery degradation cost of the PEVs. The simulation result indicates that smart charging effectuation is economical.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3