Optimization Strategy for Electric Vehicle Routing under Traffic Impedance Guidance

Author:

Li Jingyu12,Tian Shiyuan1,Zhang Na12,Liu Guangchen12ORCID,Wu Zhaoyuan3,Li Wenyi12

Affiliation:

1. School of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China

2. Engineering Research Center of Large Energy Storage Technology, Ministry of Education, Hohhot 010080, China

3. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Abstract

Electric vehicles (EVs) not only serve as significant loads for the power grid but also play a crucial role in the operation of the traffic. Their travel and charging behaviors have an impact on both the power grid and the road network. In order to address the potential impacts of a large-scale deployment of EVs on the power grid and the exacerbation of traffic congestion, this paper first establishes a dynamic road network model based on graph theory and time-varying traffic data combined with a road impedance model. Then, the spatio-temporal distribution characteristics of EV travel are modeled. Furthermore, by incorporating real-time road network data, the traditional Dijkstra’s algorithm for finding the optimal path is improved. At each node, the current real-time road impedance is used as the objective for EV path updates, thus accurately capturing the energy consumption of the EVs. Finally, using a standard testing problem on a typical working day based on data from a real case, the impacts of EV travel and charging behaviors on power distribution network operation and traffic congestion are analyzed under scenarios with no guidance and guidance for the shortest travel time. The results show that this method can significantly reduce the time cost by approximately 18% in travel time, which is of particular concern to users. This method balances the load of the charging stations, elevates the voltage level within the safety requirement of 7%, and simultaneously alleviates traffic congestion near the stations.

Funder

Jiebangguashuai project of Inner Mongolia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3