Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China

Author:

Liu Yanrong,Meng Zhongqiu,Zhu Lei,Hu Di,He HandongORCID

Abstract

The evaluation of landslide susceptibility is of great significance in the prevention and management of geological hazards. The accuracy of the landslide susceptibility prediction model based on machine learning is significantly higher than that of traditional expert knowledge and the conventional mathematical statistics model. The correct and reasonable selection of non-landslide samples in the machine learning model greatly improves the prediction accuracy and reliability of the regional landslide susceptibility model. Focusing on the problem of selecting non-landslide samples in the machine learning model for landslide susceptibility evaluation, this paper proposes a landslide susceptibility evaluation method based on the combination of an information model and machine learning in traditional mathematical statistics. First, the influence factors for landslide susceptibility evaluation are screened by the correlation analysis method. Second, the information value model is used to delimit areas with low and relatively low landslide susceptibility, and non-landslide points are randomly selected. Third, a landslide susceptibility evaluation method combined with IV-ML, such as logistic regression (IV-LR), random forest (IV-RF), support vector machine (IV-SVM), and artificial neural network (IV-ANN), is established. Finally, the landslide susceptibility factors in the Dabie Mountain area of Anhui Province are analyzed, and the accuracy of the landslide susceptibility evaluation results using the IV-LR, IV-RF, IV-SVM, and IV-ANN and LR, RF, SVM, and ANN methods are compared. The accuracy is evaluated by examining the ACC, AUC, and kappa values of the model. The results indicate that the evaluation effect of the IV-ML models (IV-LR, IV-RF, IV-SVM, IV-ANN) on landslide susceptibility is significantly higher than that of the ML models (LR, RF, SVM, ANN).

Funder

National Natural Science Foundations of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3