Single Image Super-Resolution Based on Global Dense Feature Fusion Convolutional Network

Author:

Xu Wang,Chen Renwen,Huang Bin,Zhang Xiang,Liu Chuan

Abstract

Deep neural networks (DNNs) have been widely adopted in single image super-resolution (SISR) recently with great success. As a network goes deeper, intermediate features become hierarchical. However, most SISR methods based on DNNs do not make full use of the hierarchical features. The features cannot be read directly by the subsequent layers, therefore, the previous hierarchical information has little influence on the subsequent layer output, and the performance is relatively poor. To address this issue, a novel global dense feature fusion convolutional network (DFFNet) is proposed, which can take full advantage of global intermediate features. Especially, a feature fusion block (FFblock) is introduced as the basic module. Each block can directly read raw global features from previous ones and then learns the feature spatial correlation and channel correlation between features in a holistic way, leading to a continuous global information memory mechanism. Experiments on the benchmark tests show that the proposed method DFFNet achieves favorable performance against the state-of-art methods.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Review on Deep Learning Based Image Super-resolution Restoration Algorithms;Xu;Acta Autom. Sin.,2017

2. Single Image Super-Resolution via Locally Regularized Anchored Neighborhood Regression and Nonlocal Means

3. Noise Robust Face Image Super-Resolution through Smooth Sparse Representation;Chen;IEEE Trans. Cybern.,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3