Sequence Image Interpolation via Separable Convolution Network

Author:

Jin XingORCID,Tang Ping,Houet ThomasORCID,Corpetti Thomas,Alvarez-Vanhard Emilien GenceORCID,Zhang ZhengORCID

Abstract

Remote-sensing time-series data are significant for global environmental change research and a better understanding of the Earth. However, remote-sensing acquisitions often provide sparse time series due to sensor resolution limitations and environmental factors, such as cloud noise for optical data. Image interpolation is the method that is often used to deal with this issue. This paper considers the deep learning method to learn the complex mapping of an interpolated intermediate image from predecessor and successor images, called separable convolution network for sequence image interpolation. The separable convolution network uses a separable 1D convolution kernel instead of 2D kernels to capture the spatial characteristics of input sequence images and then is trained end-to-end using sequence images. Our experiments, which were performed with unmanned aerial vehicle (UAV) and Landsat-8 datasets, show that the method is effective to produce high-quality time-series interpolated images, and the data-driven deep model can better simulate complex and diverse nonlinear image data information.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. Big Earth Data from space: a new engine for Earth science

2. Review on Filtering and Reconstruction Algorithms of Remote Sensing Time Series Data;Li;J. Remote Sens.,2009

3. Image Processing on Time Series;Lu;Crim. Technol.,2004

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3