Production of Ti–1.5Al–1Mn Titanium Alloy Butt Joints by Friction Stir Welding

Author:

Eliseev AlexanderORCID,Amirov Alihan,Kalashnikova TatyanaORCID,Vorontsov AndreyORCID,Kolubaev Evgeny

Abstract

A focus towards industrial energy efficiency explains the current interest in light and high-strength materials and welding and processing technologies. Among the latest popular materials are titanium alloys, which are difficult to process and weld. The problem of joining can be solved by friction stir welding. In the present paper, the mechanical properties and structure of a friction stir welded Ti–1.5Al–1Mn titanium alloy were studied. Alloy behavior in friction stir welding is poorly known; therefore, special attention was paid to the welding process—process modes, torque, and axial force. For the first time, Ti–1.5Al–1Mn joints with 92% of their base metal strength were produced by friction stir welding. Additionally, the important role of the axial load in welding was demonstrated. Axial load increases adhesion and mass transfer. A tool made of ZhS32 nickel heat-resistant superalloy received low wear after 1.5 m of welding. A layer with coarse grains was first found in the subsurface of the stir zone—this layer results from repeated recrystallization behind the tool due to the thermal effect of the shoulders and the low thermal conductivity of the material.

Funder

Siberian Branch, Russian Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Optimization and Measurement Techniques of the Friction Stir Welding (FSW) Process;Journal of Manufacturing and Materials Processing;2023-10-07

2. Formations of dissimilar lap weld of steel and titanium alloy by friction stir welding;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

3. Friction stir welding of steel-aluminum bimetals using a nickel-based superalloy tool;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

4. Effects of process parameters on joint formation and tool wear behavior in friction stir welded TA5 alloy;The International Journal of Advanced Manufacturing Technology;2022-11-01

5. Light Metals and Their Composites;Metals;2022-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3