Optimizing the High-Performance Milling of Thin Aluminum Alloy Plates Using the Taguchi Method

Author:

Kuo Cheng-HsienORCID,Lin Zi-Yi

Abstract

Most aerospace parts are thin walled and made of aluminum or titanium alloy that is machined to the required shape and dimensions. Deformation is a common issue. Although the reduced cutting forces used in high-speed milling generate low residual stress, the problem of deformation cannot be completely resolved. In this work, we emphasized that choosing the correct cutting parameters and machining techniques could increase the cutting performance and surface quality and reduce the deformation of thin plates. In this study, a part made of a thin 6061 aluminum alloy plate was machined by high-speed milling (HSM), and a Taguchi L16 orthogonal array was used to optimize the following parameters: linear velocity, feed per tooth, cutting depth, cutting width, and toolpath. The impact of cutting parameters on the degree of deformation, surface roughness, as well as the cutting force on the thin plate were all investigated. The results showed that the experimental parameters for the optimal degree of deformation were A1 (linear velocity 450 mm/min), B1 (feed per tooth 0.06 mm/tooth), C1 (cutting depth 0.3 mm), D4 (cutting width 70%), and E4 (rough zigzag). Feed per tooth was the most significant control factor, with a contribution as high as 63.5%. It should also be mentioned that, according to the factor response of deformation, there was a lower value of feed per tooth and less deformation. Furthermore, the feed per tooth and the cutting depth decreased and the surface roughness increased. The cutting force rose or fell with an increase or decrease of cutting depth.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3