Abstract
Due to the small difference between the thermal expansion coefficients of silica optical fiber and silica glass, they are used as probe materials of optical fiber acoustic wave sensors. According to the light absorption characteristics of a pressure-sensitive silica diaphragm and silica glass, the laser welding of an all-silica Fabry–Perot (FP) interference optical fiber acoustic wave sensor with a CO2 laser is proposed. For understanding the influence of thermal expansion of sealing air in an FP cavity and the drift of interference-intensity demodulation working point of a FP interference acoustic wave sensor, we designed a process for the laser welding of an ultra-thin silica diaphragm and sleeve and optical fiber and sleeve. The exhaust hole of the FP cavity is reserved in the preparation process, and an amplified spontaneous emission light source and a tunable optical-fiber FP filter are introduced to stabilize the working point. The sensor is tested with a 40 kHz sound vibration signal. The results show that the sound pressure sensitivity of the sensor to an acoustic source of 0.02–0.1 W/cm2 is 6.59 mV/kPa. The linearity coefficient is 0.99975, indicating good linearity.
Funder
Guangdong Basic and Applied Basic Research Foundation,Characteristic Innovation Project of Guangdong Universities
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献