Author:
Willberry James Owen,Papaelias Mayorkinos,Franklyn Fernando Gerard
Abstract
Acoustic emission (AE) is widely used for condition monitoring of critical components and structures. Conventional AE techniques employ wideband or resonant piezoelectric sensors to detect elastic stress waves propagating through various types of structural materials, including composites during damage evolution. Recent developments in fibre optic acoustic emission sensors (FOAES) have enabled new ways of detecting and monitoring damage evolution using AE. An optical fibre consists of a core with a high refractive index and a surrounding cladding. The buffer layer and outer jacket both act as protective polymer layers. Glass optical fibres can be used for manufacturing AE sensors of sufficiently small size to enable their embedding into fibre-reinforced polymer composite materials. The embedding process protects the FOAES against environmental stresses prolonging operational lifetime. The immunity of FOAES to electromagnetic interference makes this type of sensor attractive for condition monitoring purposes across a wide range of challenging operational environments. This paper provides an exhaustive review of recent developments on FOAES including their fundamental operational principles and key industrial applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献