Many-Scale Investigations of the Deformation Behavior of Polycrystalline Composites: I—Machine Learning Applied for Image Segmentation

Author:

Schneider YanlingORCID,Prabhu VighneshORCID,Höss KaiORCID,Wasserbäch Werner,Schmauder SiegfriedORCID,Zhou Zhangjian

Abstract

Our work investigates the polycrystalline composite deformation behavior through multiscale simulations with experimental data at hand. Since deformation mechanisms on the micro-level link the ones on the macro-level and the nanoscale, it is preferable to perform micromechanical finite element simulations based on real microstructures. The image segmentation is a necessary step for the meshing. Our 2D EBSD images contain at least a few hundred grains. Machine learning (ML) was adopted to automatically identify subregions, i.e., individual grains, to improve local feature extraction efficiency and accuracy. Denoising in preprocessing and postprocessing before and after ML, respectively, is beneficial in high quality feature identification. The ML algorithms used were self-developed with the usage of inherent code packages (Python). The performances of the three supervised ML models—decision tree, random forest, and support vector machine—are compared herein; the latter two achieved accuracies of up to 99.8%. Calculations took about 0.5 h from the original input dataset (EBSD image) to the final output (segmented image) running on a personal computer (CPU: 3.6 GHz). For a realizable manual pixel sortation, the original image was firstly scaled from the initial resolution 10802 pixels down to 3002. After ML, some manual work was necessary due to the remaining noises to achieve the final image status ready for meshing. The ML process, including this manual work time, improved efficiency by a factor of about 24 compared to a purely manual process. Simultaneously, ML minimized the geometrical deviation between the identified and original features, since it used the original resolution. For serial work, the time efficiency would be enhanced multiplicatively.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3