A Machine Learning Approach for Segmentation and Characterization of Microtextured Regions in a Near-α Titanium Alloy

Author:

Rao Haodong1,Liu Dong1,Jin Feng1,Lv Nan1,Nan Jungang1,Wang Haiping2,Yang Yanhui1,Wang Jianguo1

Affiliation:

1. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. Jiangsu Longda Superalloy Material Company Limited, Wuxi 214105, China

Abstract

The development of automated segmentation and quantitative characterization of microtextured regions (MTRs) from the complex heterogeneous microstructures is urgently needed, since MTRs have been proven to be the critical issue that dominates the dwell-fatigue performance of aerospace components. In addition, MTRs in Ti alloys have similarities to microstructures encountered in other materials, including minerals and biomaterials. Meanwhile, machine learning (ML) offers new opportunities. This paper addresses segmentation and quantitative characterization of MTRs, where an ML approach, the Gaussian mixture models (GMMs) coupled with density-based spatial clustering of applications with noise (DBSCAN) clustering algorithms, was employed in order to process the orientation data acquired via EBSD in the Matlab environment. Pixels with orientation information acquired through electron backscatter diffraction (EBSD) are divided and colored into several “classes” (MTRs) within the defined c-axis misorientations (i.e., 25°, 20°, 15°, 10°, and 5°), the precision and efficacy of which are verified by the morphology and pole figure of the segmented MTR. An appropriate range of c-axis misorientations for MTR segmentation was derived, i.e., 15~20°. The contribution of this innovative technique is compared with previous studies. At the same time, the MTRs were statistically characterized in the global region.

Funder

National Natural Science Foundations of China

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3