Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals

Author:

Saroha SumitORCID,Zurek-Mortka MartaORCID,Szymanski Jerzy RyszardORCID,Shekher VineetORCID,Singla PardeepORCID

Abstract

In order to analyze the nature of electrical demand series in deregulated electricity markets, various forecasting tools have been used. All these forecasting models have been developed to improve the accuracy of the reliability of the model. Therefore, a Wavelet Packet Decomposition (WPD) was implemented to decompose the demand series into subseries. Each subseries has been forecasted individually with the help of the features of that series, and features were chosen on the basis of mutual correlation among all-time lags using an Auto Correlation Function (ACF). Thus, in this context, a new hybrid WPD-based Linear Neural Network with Tapped Delay (LNNTD) model, with a cyclic one-month moving window for a one-year market clearing volume (MCV) forecasting has been proposed. The proposed model has been effectively implemented in two years (2015–2016) and unconstrained MCV data collected from the Indian Energy Exchange (IEX) for 12 grid regions of India. The results presented by the proposed models are better in terms of accuracy, with a yearly average MAPE of 0.201%, MAE of 9.056 MWh, and coefficient of regression (R2) of 0.9996. Further, forecasts of the proposed model have been validated using tracking signals (TS’s) in which the values of TS’s lie within a balanced limit between −492 to 6.83, and universality of the model has been carried out effectively using multiple steps-ahead forecasting up to the sixth step. It has been found out that hybrid models are powerful forecasting tools for demand forecasting.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3