A point and interval forecasting of solar irradiance using different decomposition based hybrid models
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-01020-9.pdf
Reference32 articles.
1. Abdel-Nasser M, Mahmoud K, Lehtonen M (2021) Reliable solar irradiance forecasting approach based on choquet integral and Deep LSTMs. IEEE Trans Industr Inform 17(3):1873–1881. https://doi.org/10.1109/TII.2020.2996235
2. Acikgoz H (2022) A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting. Appl Energy 305:117912.https://doi.org/10.1016/J.APENERGY.2021.117912
3. Ali M, Prasad R, Xiang Y et al (2021) Variational mode decomposition based random forest model for solar radiation forecasting: New emerging machine learning technology. Energy Rep 7:6700–6717. https://doi.org/10.1016/J.EGYR.2021.09.113
4. Benali L, Notton G, Fouilloy A, Voyant C, Dizene R (2019) Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renew Energy 132:871–884. https://doi.org/10.1016/j.renene.2018.08.044
5. Bouzgou H, Gueymard CA (2019) Fast short-term global solar irradiance forecasting with wrapper mutual information. Renew Energy 133:1055–1065. https://doi.org/10.1016/j.renene.2018.10.096
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forecasting mooring tension of offshore platforms based on complete ensemble empirical mode decomposition with adaptive noise and deep learning network;Measurement;2025-01
2. Multimodel Ensemble Forecast of Global Horizontal Irradiance at PV Power Stations Based on Dynamic Variable Weight;Journal of Tropical Meteorology;2024-09-01
3. An advanced hybrid deep learning model for accurate energy load prediction in smart building;Energy Exploration & Exploitation;2024-08-27
4. Comparative study of long short-term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption prediction;Energy Exploration & Exploitation;2024-08-25
5. Artificial intelligence modeling for power system planning;Electrical Engineering;2024-08-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3