Abstract
The reconstruction of positron emission tomography data is a difficult task, particularly at low count rates because Poisson noise has a significant influence on the statistical uncertainty of positron emission tomography (PET) measurements. Prior information is frequently used to improve image quality. In this paper, we propose the use of a field of experts to model a priori structure and capture anatomical spatial dependencies of the PET images to address the problems of noise and low count data, which make the reconstruction of the image difficult. We reconstruct PET images by using a modified MXE algorithm, which minimizes a objective function with the cross-entropy as a fidelity term, while the field of expert model is incorporated as a regularizing term. Comparisons with the expectation maximization algorithm and a iterative method with a prior penalizing relative differences showed that the proposed method can lead to accurate estimation of the image, especially with acquisitions at low count rate.
Subject
General Physics and Astronomy
Reference25 articles.
1. Principles and Practice of Positron Emission Tomography;Wahl,2002
2. PET/CT in Clinical Practice;Lynch,2007
3. The Theory and Practice of 3D PET;Bendriem,2013
4. Three penalized EM-type algorithms for PET image reconstruction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献