Integrated Airborne LiDAR Data and Imagery for Suburban Land Cover Classification Using Machine Learning Methods

Author:

Mo ,Zhong ,Sun ,Wu ,Du ,Geng ,Cao ORCID

Abstract

It is valuable to study the land use/land cover (LULC) classification for suburbs. The fusion of Light Detection and Ranging (LiDAR) data and aerial imagery is often regarded as an effective method for the LULC classification; however, more in-depth analysis would be required to explore effective information for enhancing the suburban LULC classification. In this study, first, both aerial imageries and point clouds were simultaneously collected. Then, LiDAR-derived models, i.e., normalized digital surface model (nDSM) and surface intensity model (IM), were generated from the elevation and intensity of point clouds. Further, considering the surface characteristics of ground objects in suburb, we proposed a new LiDAR-derived model, namely surface roughness model (RM), to reveal the degree of surface fluctuations. Additionally, various combinations of aerial imageries and the LiDAR-derived data were used to analyze the effects of multi-variable fusion under different scenarios and optimize the multi-variable integration for suburban LULC classification. The mean decrease impurity method was used to identify the importance of variables; three machine learning classifiers, i.e., random forest (RF), k-nearest neighbor (KNN) and artificial neural network (ANN) were adopted in various scenarios. The results were as follows. The fusion of aerial imagery and all the LiDAR-derived models, i.e., nDSM, RM and IM, with RF classifier performs best in the suburban LULC classification (overall accuracy = 84.75%, kappa coefficient = 0.80). Variable importance analysis shows that nDSM has the highest variable importance proportion (VIP) value, followed by RM, IM, and spectral information, indicating the feasibility of this proposed LiDAR-derived model-RM. This research presents effective methods relating to the application of aerial imagery and LiDAR-derived model for the complex suburban surface scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties. By the National Research Council (NRC);Hanna,2005

2. Urban land cover classification using airborne LiDAR data: A review

3. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring

4. LiDAR Remote Sensing and Applications;Dong,2017

5. Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3