Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network

Author:

Yu Wenshuo1,Zhao Liquan1ORCID,Zhong Tie1

Affiliation:

1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China

Abstract

Low-light image enhancement aims to improve the perceptual quality of images captured under low-light conditions. This paper proposes a novel generative adversarial network to enhance low-light image quality. Firstly, it designs a generator consisting of residual modules with hybrid attention modules and parallel dilated convolution modules. The residual module is designed to prevent gradient explosion during training and to avoid feature information loss. The hybrid attention module is designed to make the network pay more attention to useful features. A parallel dilated convolution module is designed to increase the receptive field and capture multi-scale information. Additionally, a skip connection is utilized to fuse shallow features with deep features to extract more effective features. Secondly, a discriminator is designed to improve the discrimination ability. Finally, an improved loss function is proposed by incorporating pixel loss to effectively recover detailed information. The proposed method demonstrates superior performance in enhancing low-light images compared to seven other methods.

Funder

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3