GL-YOLO-Lite: A Novel Lightweight Fallen Person Detection Model

Author:

Dai Yuan1ORCID,Liu Weiming1

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

Abstract

The detection of a fallen person (FPD) is a crucial task in guaranteeing individual safety. Although deep-learning models have shown potential in addressing this challenge, they face several obstacles, such as the inadequate utilization of global contextual information, poor feature extraction, and substantial computational requirements. These limitations have led to low detection accuracy, poor generalization, and slow inference speeds. To overcome these challenges, the present study proposed a new lightweight detection model named Global and Local You-Only-Look-Once Lite (GL-YOLO-Lite), which integrates both global and local contextual information by incorporating transformer and attention modules into the popular object-detection framework YOLOv5. Specifically, a stem module replaced the original inefficient focus module, and rep modules with re-parameterization technology were introduced. Furthermore, a lightweight detection head was developed to reduce the number of redundant channels in the model. Finally, we constructed a large-scale, well-formatted FPD dataset (FPDD). The proposed model employed a binary cross-entropy (BCE) function to calculate the classification and confidence losses. An experimental evaluation of the FPDD and Pascal VOC dataset demonstrated that GL-YOLO-Lite outperformed other state-of-the-art models with significant margins, achieving 2.4–18.9 mean average precision (mAP) on FPDD and 1.8–23.3 on the Pascal VOC dataset. Moreover, GL-YOLO-Lite maintained a real-time processing speed of 56.82 frames per second (FPS) on a Titan Xp and 16.45 FPS on a HiSilicon Kirin 980, demonstrating its effectiveness in real-world scenarios.

Funder

Project of research on multi-scale foreign object detection 513 system and related technical standards for ultra-long continuous space of urban rail platform

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3