Affiliation:
1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
Abstract
The detection of a fallen person (FPD) is a crucial task in guaranteeing individual safety. Although deep-learning models have shown potential in addressing this challenge, they face several obstacles, such as the inadequate utilization of global contextual information, poor feature extraction, and substantial computational requirements. These limitations have led to low detection accuracy, poor generalization, and slow inference speeds. To overcome these challenges, the present study proposed a new lightweight detection model named Global and Local You-Only-Look-Once Lite (GL-YOLO-Lite), which integrates both global and local contextual information by incorporating transformer and attention modules into the popular object-detection framework YOLOv5. Specifically, a stem module replaced the original inefficient focus module, and rep modules with re-parameterization technology were introduced. Furthermore, a lightweight detection head was developed to reduce the number of redundant channels in the model. Finally, we constructed a large-scale, well-formatted FPD dataset (FPDD). The proposed model employed a binary cross-entropy (BCE) function to calculate the classification and confidence losses. An experimental evaluation of the FPDD and Pascal VOC dataset demonstrated that GL-YOLO-Lite outperformed other state-of-the-art models with significant margins, achieving 2.4–18.9 mean average precision (mAP) on FPDD and 1.8–23.3 on the Pascal VOC dataset. Moreover, GL-YOLO-Lite maintained a real-time processing speed of 56.82 frames per second (FPS) on a Titan Xp and 16.45 FPS on a HiSilicon Kirin 980, demonstrating its effectiveness in real-world scenarios.
Funder
Project of research on multi-scale foreign object detection 513 system and related technical standards for ultra-long continuous space of urban rail platform
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献