‘Statistical Irreproducibility’ Does Not Improve with Larger Sample Size: How to Quantify and Address Disease Data Multimodality in Human and Animal Research

Author:

Basson Abigail R.ORCID,Cominelli Fabio,Rodriguez-Palacios Alexander

Abstract

Poor study reproducibility is a concern in translational research. As a solution, it is recommended to increase sample size (N), i.e., add more subjects to experiments. The goal of this study was to examine/visualize data multimodality (data with >1 data peak/mode) as cause of study irreproducibility. To emulate the repetition of studies and random sampling of study subjects, we first used various simulation methods of random number generation based on preclinical published disease outcome data from human gut microbiota-transplantation rodent studies (e.g., intestinal inflammation and univariate/continuous). We first used unimodal distributions (one-mode, Gaussian, and binomial) to generate random numbers. We showed that increasing N does not reproducibly identify statistical differences when group comparisons are repeatedly simulated. We then used multimodal distributions (>1-modes and Markov chain Monte Carlo methods of random sampling) to simulate similar multimodal datasets A and B (t-test-p = 0.95; N = 100,000), and confirmed that increasing N does not improve the ‘reproducibility of statistical results or direction of the effects’. Data visualization with violin plots of categorical random data simulations with five-integer categories/five-groups illustrated how multimodality leads to irreproducibility. Re-analysis of data from a human clinical trial that used maltodextrin as dietary placebo illustrated multimodal responses between human groups, and after placebo consumption. In conclusion, increasing N does not necessarily ensure reproducible statistical findings across repeated simulations due to randomness and multimodality. Herein, we clarify how to quantify, visualize and address disease data multimodality in research. Data visualization could facilitate study designs focused on disease subtypes/modes to help understand person–person differences and personalized medicine.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3