Metabolomic Profiling of Red Blood Cells to Identify Molecular Markers of Methotrexate Response in the Collagen Induced Arthritis Mouse Model

Author:

Salamoun Yezan M.,Polireddy Kishore,Cho Yu Kyoung,Funk Ryan SolORCID

Abstract

Although methotrexate (MTX) is the first line disease-modifying therapy used in the treatment of autoimmune arthritis, it is limited by its unpredictable and variable response profile and lack of therapeutic biomarkers to predict or monitor therapeutic response. The purpose of this work is to evaluate the utility of red blood cell (RBC) metabolite profiles to screen for molecular biomarkers associated with MTX response. Methods: Utilizing the collagen-induced arthritis mouse model, DBA/1J mice were treated with subcutaneous MTX (20 mg/kg/week) and RBC samples were collected and analyzed by semi-targeted global metabolomic profiling and analyzed by univariate analysis. Results: MTX treatment normalized the following RBC metabolite levels that were found to be altered by disease induction: N-methylisoleucine, nudifloramide, phenylacetylglycine, 1-methyl-L-histidine, PC 42:1, PE 36:4e, PC 42:3, PE 36:4e (16:0e/20:4), and SM d34:0. Changes in the RBC metabolome weakly but significantly correlated with changes in the plasma metabolome following MTX treatment (ρ = 0.24, p = 1.1 × 10−13). The RBC metabolome resulted in the detection of nine significant discriminatory biomarkers, whereas the plasma metabolome resulted in two. Overall, the RBC metabolome yielded more highly sensitive and specific biomarkers of MTX response compared to the plasma metabolome. N-methylisoleucine was found to be highly discriminatory in both plasma and RBCs. Conclusions: Our results suggest that RBCs represent a promising biological matrix for metabolomics and future studies should consider the RBC metabolome in their biomarker discovery strategy.

Funder

National Center for Advancing Translational Sciences

National Institute of General Medical Sciences

American Foundation for Pharmaceutical Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3