Abstract
Abstract
Background
Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum.
Methods
We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals.
Results
Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity.
Conclusions
A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
Funder
National Natural Science Foundation of China
Young Elite Scientists Sponsorship Program by CAST
Priority Academic Program Development of Jiangsu Higher Education Institutions
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献