A Multi-Scale Mapping Approach Based on a Deep Learning CNN Model for Reconstructing High-Resolution Urban DEMs

Author:

Jiang Ling,Hu Yang,Xia Xilin,Liang QiuhuaORCID,Soltoggio Andrea,Kabir Syed Rezwan

Abstract

The scarcity of high-resolution urban digital elevation model (DEM) datasets, particularly in certain developing countries, has posed a challenge for many water-related applications such as flood risk management. A solution to address this is to develop effective approaches to reconstruct high-resolution DEMs from their low-resolution equivalents that are more widely available. However, the current high-resolution DEM reconstruction approaches mainly focus on natural topography. Few attempts have been made for urban topography, which is typically an integration of complex artificial and natural features. This study proposed a novel multi-scale mapping approach based on convolutional neural network (CNN) to deal with the complex features of urban topography and to reconstruct high-resolution urban DEMs. The proposed multi-scale CNN model was firstly trained using urban DEMs that contained topographic features at different resolutions, and then used to reconstruct the urban DEM at a specified (high) resolution from a low-resolution equivalent. A two-level accuracy assessment approach was also designed to evaluate the performance of the proposed urban DEM reconstruction method, in terms of numerical accuracy and morphological accuracy. The proposed DEM reconstruction approach was applied to a 121 km2 urbanized area in London, United Kingdom. Compared with other commonly used methods, the current CNN-based approach produced superior results, providing a cost-effective innovative method to acquire high-resolution DEMs in other data-scarce regions.

Funder

the National Natural Science Foundation of China

China Postdoctoral Science Foundation

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3