Comparison of DEM Super-Resolution Methods Based on Interpolation and Neural Networks

Author:

Zhang YifanORCID,Yu Wenhao

Abstract

High-resolution digital elevation models (DEMs) play a critical role in geospatial databases, which can be applied to many terrain-related studies such as facility siting, hydrological analysis, and urban design. However, due to the limitation of precision of equipment, there are big gaps to collect high-resolution DEM data. A practical idea is to recover high-resolution DEMs from easily obtained low-resolution DEMs, and this process is termed DEM super-resolution (SR). However, traditional DEM SR methods (e.g., bicubic interpolation) tend to over-smooth high-frequency regions on account of the operation of averaging local variations. With the recent development of machine learning, image SR methods have made great progress. Nevertheless, due to the complexity of terrain characters (e.g., peak and valley) and the huge difference between elevation field and image RGB (Red, Green, and Blue) value field, there are few works that apply image SR methods to the task of DEM SR. Therefore, this paper investigates the question of whether the state-of-the-art image SR methods are appropriate for DEM SR. More specifically, the traditional interpolation method and three excellent SR methods based on neural networks are chosen for comparison. Experimental results suggest that SRGAN (Super-Resolution with Generative Adversarial Network) presents the best performance on accuracy evaluation over a series of DEM SR experiments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3