A Comparative Analysis of the Impacts of Two Types of El Niño on the Central and Eastern Pacific ITCZ

Author:

Zhu Jinshuang,Liu Yudi,Xie Ruiqing,Chang Haijie

Abstract

The precipitation data from the Global Precipitation Climatology Project (GPCP) and CPC Merged Analysis of Precipitation (CMAP) were used to investigate the discrepancy of Centre and Eastern Pacific ITCZ (CEP-ITCZ) during two types of El Niño years. Two models of the heat source distribution during two types of El Niño events were constructed, and the causes of different CEP-ITCZ anomalies for two types of El Niño events were analyzed through the Gill model. The results show that the CEP-ITCZ precipitation is approximately 4.0° southward, and the intensity is enhanced by 3.6 mm/day during the mature period of Eastern Pacific El Niño (EP-El Niño), while during the mature period of Central Pacific El Niño (CP-El Niño), it is only 0.8° southward, and the intensity is enhanced by 3.2 mm/day. The meridional mode of the SST anomaly by means of EOF (Empirical Orthogonal Function) can indirectly affect the CEP-ITCZ by influencing the atmospheric Rossby wave response. In CP-El Niño years, the meridional mode of the SST anomaly is weak, and the atmospheric Rossby wave response enhances the northern and southern trade-wind zones at the same time. The anomaly of cross-equatorial flow is weak and the CEP-ITCZ moves southward a little. At the same time, the wind convergence zone is enhanced, and it is more conducive to the vertical transport of water vapor. In EP-El Niño years, the meridional mode of the SST anomaly is strong, and the atmospheric Rossby wave response strengthens the meridional wind on the northern side of the equator, leading to the southward shift of the CEP-ITCZ. At the same time, the wind convergence zone is weakened and widened, and to a certain extent, it suppresses the vertical transport increase of water vapor caused by the sea surface evaporation.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3